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Part 1: Why random matrices?
            What is a random matrix?



In atomic nuclei there exist long sequences (about 150 to 200 elements) of states
with identical quantum numbers. Excitation energy about 8 MeV.

J. B. Garg  et  al., Phys. Rev. 134 (1964) B 985. 

N. Bohr, Nature 137 (1936) 344.

Brief History: From Bohr to Wigner to Dyson

Discovered by Fermi.
Niels Bohr : The
narrow and narrowly
spaced resonances
are not compatible
with the motion of
independent particles
in the nucleus. The
“compound nucleus”
is system of strongly
interacting nucleons.

J. B. Garg et al., Phys. Rev. 134 (1964) B 985.

Niels Bohr,
1885 - 1962



After WWII, Eugene Wigner develops a formal theory of nuclear reactions.
How to deal with the resonances? No information on nuclear forces. Led by
Bohr’s idea. Resonances as quasibound states: Resonance energies =
eigenvalues of the Hamiltonian H with strong nucleon-nucleon interactions. 

 Consider matrix representation Hµν of Hamiltonian in Hilbert space. Indices
 µ,ν = 1, ... N (N large) label states of fixed spin and parity. In time-reversal

 invariant systems with we have Hµν  = Hνµ   real. Further symmetries shall not exist. 
 Leafing accidentally through a book on mathematical statistics gave Wigner the

Essential idea: Consider the matrix elements
of the Hamiltonian as random variables. That
yields a

        RANDOM MATRIX.

       

                              
 Eugene Wigner, 1902 - 1995

Distribution of matrix elements realized not in a single
Hamiltonian but in an ensemble of Hamiltonians!!! 
E. P. Wigner, Ann. Math. 62 (1955) 548.



Freeman Dyson, * 1923 

Using group theory, Dyson shows there exist three ensembles of random matrices:
  (i) for time-reversal and rotationally invariant systems, 
  (ii) for systems that break time-reversal invariance, 
  (iii) for systems with half-integer spin that break rotational invariance (elements
         of  H are quaternions). F. J. Dyson, J. Math. Phys. 3 (1962) 140, 157, 166, 1191, 1199.

How to choose the ensemble (i.e., the distribution of matrix elements)? Focus
attention on ensemble (i),  

No preferred direction in Hilbert space: Invariance under 
all transformations that respect symmetry (orthogonal
transformations). Simplest choice: Gaussian distribution
of matrix elements. Probability distribution is

All states are coupled to each other. Only free parameter
     determines mean level spacing. Gaussian cutoff
arbitrary but convenient. That defines GOE. All results
obtained by going to infinite matrix dimension and
averaging over the ensemble. Similarly GUE, GSE.
Three canonical ensembles of Dyson.



  Quantitative predictions: These are universal and ergodic 

 

s is the level distance in units of the mean
level spacing. Result is parameter-free. 
Level repulsion at small distances.

(b) Variance of the number of levels
      in interval of length L (“level
      variance”). 

L is measured in units of the mean level spacing.
Variance  grows only logarithmically with L!
Dyson-Mehta or Delta 3 statistics used below 
is directly related to level variance.

GOE

GOE

These are statistical measures.
Tests require large data sets.

(c) Projections of eigenfunctions
     onto fixed vector possess
     Gaussian distribution. 

(a) Distribution of spacings of
      neighboring eigenvalues
      (“nearest-neighbor spacing
      distribution”).



After Dyson’s papers, formal development essentially comes to a standstill.
Applications in nuclei, both to spectra and to statistical nuclear reactions.
Since the 1980’s, random-matrix theory shows explosive growth.

Applications to 
-- quantum chaos
-- many-body systems
-- chaotic scattering
-- disordered mesoscopic systems
-- quantum chromodynamics
-- number theory, mathematics
-- etc. etc.

Why such enormously wide applications?
Theory captures universal features that do
not depend on  specific properties of a 
physical system.

I will discuss a select set
of these applications.



Part two: Quantum chaos
                (a) systems with few degrees of freedom
                (b) many-body systems.



Deterministic classical chaos: Trajectories in phase space are instable. Exponential 
divergence of trajectories that start from neighboring points in phase space. Long-
term behavior in time not predictable either analytically or numerically. Only 
probabilistic statements possible. (Maxwell, Poincare, Kolmogorov). 

Quantum chaos (“Quantum Manifestations of Classical chaos”): Theory less 
completely developed. Investigations on statistical properties of  spectra 
(eigenvalues and eigenfunctions). Today: Only fully chaotic systems.

Systems with few degrees of freedom:



Studies of chaotic quantum systems have long history. Two cases have been studied
intensely:

D. Wintgen, A. Holle, G. Wiebusch, J. Main, H. Friedrich, K. H. Welge, J. Phys. B 19 (1986)
L 557

(a) Hydrogen atom in strong magnetic
      field. The field breaks the rotational
      symmetry of the Coulomb potential.
      Only cylindrical symmetry about field 

direction remains. For Rydberg states, 
that causes classically chaotic motion. 
Large number of states measured.

      
      
      
      

Numerical investigations of several
      chaotic systems culminated in

(b) Sinai billard. A “toy model”. Has mirror
      symmetry with regard to 4 axes. Generate
      about 1000 lowest eigenvalues of states
      with fixed symmetry numerically.

O. Bohigas, E. Giannoni, C. Schmit, Phys. Rev. Lett. 52 (1984) 1.



Investigate spectral fluctuations (distribution of eigenvalues and eigenfunctions)
with the measures provided by the theory of random matrices.

O. Bohigas, E. M Giannoni  and C. Schmit, Phys. Rev. Lett. 52 (1984) 1.  

“Bohigas-Giannoni-Schmit conjecture”: The spectral fluctuation properties of fully 
chaotic quantum systems coincide with those of the random-matrix ensemble in the 
same symmetry class. Very important development: Claims universal status of 
random-matrix approach. Numerical studies of other systems support conjecture. 



Why is that? Can one prove the conjecture?

Plausibility argument: GOE (or GUE or GSE) are ensembles of random 
Hamiltonians that encompass almost all Hamiltonian matrices (integration 
measure excludes set of measure zero!). So if in reality almost all Hamiltonians 
are chaotic, we expect conjecture to hold. Universality!

Analytical demonstration: Partial resummation of  Gutzwiller’s periodic orbit 
expansion of level density for chaotic systems yields GOE and GUE forms of 
level-level correlator. Random-matrix predictions apply in energy interval of 
length 

where      is period of shortest periodic orbit.
S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, New. J. Phys. 11 (2009) 103025.

Special case: Chaotic quantum graphs. For infinite
number of bonds and given symmetry, all level
correlators coincide with those of GOE or GUE.
Full proof of the Bohigas-Giannoni-Schmit
conjecture for that class of systems. 
Z. Pluhar and H. A. Weidenmüller, Phys. Rev. Lett. 112 (2014) 144102  and  J. Phys. A: Math. Gen.
42 (2015) 105103.



R. Haq, A. Pandey, O. Bohigas, Phys. Rev. Lett. 43 (1982) 1026
and Nuclear Data for Science and Technology, Riedel (1983) 209.

Some open problems … More evidence
from other types of nuclear data (decay
amplitudes). Similar but weaker evidence
for complex atoms and molecules. 

Systems with many degrees of freedom. No theory. Deterministic chaos?

Do many-body systems follow GOE predictions? First test: Nuclei. Resonances
seen in scattering of slow neutrons interpreted as quasibound states carrying the
same quantum numbers. Totality of such data defines “Nuclear Data Ensemble”.
Test precedes Bohigas-Giannoni-Schmit conjecture.



Historical remark, and a problem.
Prior to WWII, Bohr’s idea of the compound nucleus dominated nuclear physics.
Against such odds, Eugene Feenberg pursued the idea of independent particle
motion (the shell model). That idea triumphed after WWII in the form of the
shell model with a strong spin-orbit coupling. Very good agreement with data
on binding energies, magnetic
moments, low-lying states ...

Eugene Feenberg, 1906 – 1977
J. Hans D. Jensen, 1907 – 1973
Maria Goeppert-Mayer, 1906 - 1972

How to reconcile the shell model with the successful test of the random-matrix
approach in the Nuclear Data Ensemble?  

Shell-model configurations are mixed by the “residual” two-body interaction.
Large-scale shell-model calculations show: mixing of shell-model configurations
increases strongly with excitation energy. Statistical measures of level spacings
approach GOE predictions. Probably a generic feature in interacting systems.
V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276 (1996) 85.
T. Papenbrock and H. A. Weidenmüller, Rev. Mod. Phys. 79 (2007) 997.



Long sequences of levels also seen in collisions of ultracold gas-phase Erbium
ions. A. Frisch et al., Nature 507 (2014)  476.

Thus evidence for GOE also in interacting atoms: Evidence for universality in
nuclei and in atoms / molecules. Caused by configuration mixing.



Part three: Chaotic scattering



Resonances seen in neutron
scattering cross section follow
random-matrix predictions. Is it
possible to develop a theory of
resonance scattering based
upon random-matrix theory? 

Stochastic behavior of cross
sections not confined to isolated
resonances. Also for strongly
overlapping resonances
(“Ericson fluctuations”). Can both
cases be covered by a 
random-matrix approach?

O. Häusser et al., Nucl. Phys. A 109 (1968) 329.



Closely related scattering problems arise in many parts of physics:
nuclear physics, transport of electrons through disordered solids,
transmission of light through a medium with a disordered index of
refraction, transmission of radio waves through the turbulent
atmosphere, transmission of electromagnetic waves through
cavities in the form of chaotic billiards, …

Unified random-matrix approach to all such scattering problems exists. 
How to build such a theory? Couple a random Hamiltonian to a number of open 
channels a, b, …, construct scattering matrix             . Calculate average cross 
section, cross-section correlations … Parameters are     and the strengths of the 
couplings to the channels. Average cross section is known analytically for all 
parameter values. J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer, Phys. Rep. 129 (1985) 367.

All S-matrix correlation functions constructed that way coincide with the actual
correlation functions for chaotic quantum graphs. Proof of a generalized BGS 
conjecture. Z. Pluhar and H. A. Weidenmüller, Phys. Rev. Lett. 112 (2014) 144102 and J. Math. Phys. A: Math. Gen. 42 (2015) 105103.

  

Applications: Statistical theory of nuclear reactions, transmission of electrons 
through disordered mesoscopic samples.



Test: Microwave resonator as chaotic billiard

A flat microwave resonator (height d = 0.84 cm) admits only a single
vertical mode of the electric field up to a frequency
of 18.75 GHz. In that frequency domain, the
Helmholtz equation is equivalent to the
Schrödinger equation for a two-dimensional
billiard. For a proper choice of the shape, the
billiard is chaotic. Measurements of the output
amplitudes versus input amplitudes allow for a
precise test of chaotic scattering theory.   

Autocorrelation function and log of its Fourier
transform for weakly overlapping resonances.
Notice the non—exponential decay in time.

B. Dietz et al., Phys. Rev. E 78 (2008) 055204R.

Flat microwave resonator  (left) as a model for compound-nucleus scattering
(right) or any other stochastic scattering process. 



Part four: Altland-Zirnbauer ensembles



Random-matrix ensembles beyond Dyson‘s have emerged in
condensed-matter physics and in QCD.

Condensed matter:

Andreev scattering: Interphase of superconductor and disordered normal conductor.
Electron in normal conductor cannot penetrate into superconductor (pairing gap).
Picks up second electron and leaves a hole. Near Fermi energy that process leads to
several new classes of random-matrix ensembles. 

QCD: 

In the low-energy domain, QCD is strictly equivalent to a random-matrix ensemble
with chiral symmetry. That gives rise to additional classes of random-matrix 
ensembles. These are used, for instance, for extrapolating lattice-gauge calculations 
to infinite system size. E. Shuryak and J. Verbaarschot, Nucl. Phys. A 560  (1993) 306.

There exists a total of ten random-matrix ensembles. Relation to finite groups 
(Cartan). A. Altland and M. R. Zirnbauer, Phys. Rev. B 55 (1997) 1142.  Additional ensembles owe their existence
to distinct energy (Fermi energy, for instance) not considered by Dyson. Altland-
Zirnbauer classification applies also to topological insulators.



t 

Part five: Mathematical Aspects



The need to work out answers from random-matrix theory has triggered
important developments in mathematical physics.
Examples: Supersymmetry (combination of commuting and anticommuting
integration variables). Exploration of symmetric Riemannian spaces.

There is a very curious connection between GUE and number theory. According
to the Riemann hypothesis, all non-trivial zeros of  the Riemann zeta function,

in the complex s-plane lie on a straight line parallel to imaginary axis.
Numerical results up to millions of zeros show that distribution of spacings
follows those of GUE. Use this fact and known properties of GUE to conjecture
properties of that distribution in analytical form. What have prime numbers to
do with randomness?



Part six: Summary



   Random matrices capture universal properties of quantum systems.
   
   Applications in quantum chaos, many-body systems, chaotic scattering,
   disordered systems, QCD.
   
   Three canonical ensembles (Dyson) plus another seven (Altland and Zirnbauer).
   
   Input: Mean values (mean level spacing, average scattering matrix).
   Output: Fluctuations (level correlations, average cross section, cross-section       
   correlations).
   
   If data set agrees with random-matrix prediction, it carries no 
   information content beyond mean values. 
     
   Aspects not covered today:

   Non-invariant ensembles: Two-body random ensemble. Ensembles with partial
   symmetry breaking. Ensembles that mimick the metal-insulator transition. Etc. etc.

   Surprising application in number theory. And: Technical challenges of random-  
   matrix theory have triggered important developments in mathematical physics.





Conclusion:

The spectral fluctuations of sufficiently complex many-body systems
follow predictions of random-matrix theory. Reason not completely
understood. Connection to chaotic motion?

Question:

How can random-matrix theory be reconciled with regularity?
For instance, with the nuclear shell model valid at low excitation
energy? Tentative answer: The residual interaction mixes shell-model
configurations. At higher excitation, mixing becomes very strong. 



 
 

J. Aizenberg-Selove, Nucl. Phys. A 475 (1987)

1. Why random matrices? What are
random matrices?
Below the first threshold for
particle emission (and aside from
gamma decay), the spectra of
atoms, molecules, and atomic
nuclei are discrete. The states are
characterized by quantum
numbers that relate to symmetries:
spin ↔ rotational symmetry,
parity ↔ reflection symmetry,
isospin ↔ neutron-proton-
                 symmetry.   



Such spectra can frequently be 
reproduced using simple,
integrable models: regular
dynamics.

Regular: Rotational bands with spin / parity
0+, 2+, 4+, ...and excitation energies proportional 
to J(J+1). In molecules and in atomic nuclei.

Regular: Motion of independent particles in 
the mean field. In atoms and in atomic nuclei 
(“nuclear shell model”).

Strong evidence for the validity of both 
models for regular motion in atoms, 
molecules, and atomic nuclei. Applies 
typically to low-lying states with a variety of 
quantum numbers.

A. Bohr and B. Mottelson, Nuclear Structure
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